skip to main content


Search for: All records

Creators/Authors contains: "Raymond, Jeffery E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The rapid synthesis of an optically-transparent, flexible elastomer was performed utilizing the naturally-derived source, isosorbide. A novel monomer based on isosorbide (isosorbide dialloc, IDA) was prepared by installing carbonate functionalities along with external olefins for use in thiol–ene click chemistry. Cross-linked networks were created using the commercially-available cross-linker, trimethylolpropane tris(3-mercaptopropionate) (TMPTMP) and resulted in IDA- co -TMPTMP, an optically-transparent elastomer. Systematically, IDA- co -TMPTMP networks were synthesized using a photoinitiator, a UV cure time of one minute and varied post cure times (0–24 h, 125 mm Hg) at 100 °C to observe effects on mechanical, thermal and surface alterations. The mechanical properties also had limited changes with post cure time, including a modulus at 25 °C of 1.9–2.8 MPa and an elongation of 220–344%. The thermal decomposition temperatures of the networks were consistent, ca. 320 °C, while the glass transition temperature remained below room temperature for all samples. A cell viability assay and fluorescence imaging with adherent cells are also reported in this study to show the potential of the material as a biomedical substrate. A degradation study for 60 days resulted in 8.3 ± 3.5% and 97.7 ± 0.3% mass remaining under accelerated (1 M NaOH, 60 °C) and biological conditions (pH 7.4 PBS at 37 °C), respectively. This quickly-synthesized material has the potential to hydrolytically degrade into biologically-benign and environmentally-friendly by-products and may be utilized in renewable plastics and/or bioelastomer applications. 
    more » « less
  2.  
    more » « less
  3. Abstract

    Protein nanoparticles are a promising approach for nanotherapeutics, as proteins combine versatile chemical and biological function with controlled biodegradability. In this work, the development of an adaptable synthesis method is presented for synthetic protein nanoparticles (SPNPs) based on reactive electrojetting. In contrast to past work with electrohydrodynamic cojetting using inert polymers, the jetting solutions are comprised of proteins and chemically activated macromers, designed to react with each other during the processing step, to form insoluble nanogel particles. SPNPs made from a variety of different proteins, such as transferrin, insulin, or hemoglobin, are stable and uniform under physiological conditions and maintain monodisperse sizes of around 200 nm. SPNPs comprised of transferrin and a disulfide containing macromer are stimuli‐responsive, and serve as markers of oxidative stress within HeLa cells. Beyond isotropic SPNPs, bicompartmental nanoparticles containing human serum albumin and transferrin in two distinct hemispheres are prepared via reactive electrojetting. This novel platform provides access to a novel class of versatile protein particles with nanoscale architectures that i) can be made from a variety of proteins and macromers, ii) have tunable biological responses, and iii) can be multicompartmental, a prerequisite for controlled release of multiple drugs.

     
    more » « less